dc.contributor.author |
Kayumov I. |
|
dc.contributor.author |
Obnosov Y. |
|
dc.date.accessioned |
2018-09-17T21:47:33Z |
|
dc.date.available |
2018-09-17T21:47:33Z |
|
dc.date.issued |
2005 |
|
dc.identifier.issn |
0037-4466 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135442 |
|
dc.description.abstract |
We prove the Mejia-Pommerenke conjecture that the Taylor coefficients of hyperbolically convex functions in the disk behave like O(log-2(n)/n) as n → ∞ assuming that the image of the unit disk under such functions is a domain of bounded boundary rotation. Moreover, we obtain some asymptotically sharp estimates for the integral means of the derivatives of such functions and consider an example of a hyperbolically convex function that maps the unit disk onto a domain of infinite boundary rotation. © 2005 Springer Science+Business Media, Inc. |
|
dc.relation.ispartofseries |
Siberian Mathematical Journal |
|
dc.subject |
Conformal mapping |
|
dc.subject |
Hyperbolically convex function |
|
dc.subject |
Integral means |
|
dc.subject |
Univalent function |
|
dc.title |
Estimates for integral means of hyperbolically convex functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
46 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1062 |
|
dc.source.id |
SCOPUS00374466-2005-46-6-SID28644450477 |
|