Показать сокращенную информацию
dc.contributor.author | Hu T. | |
dc.contributor.author | Nam E. | |
dc.contributor.author | Rosalsky A. | |
dc.contributor.author | Volodin A. | |
dc.date.accessioned | 2018-09-17T21:42:33Z | |
dc.date.available | 2018-09-17T21:42:33Z | |
dc.date.issued | 2000 | |
dc.identifier.issn | 0167-7152 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135333 | |
dc.description.abstract | For a sequence of Banach space valued random elements {Vn,n≥1} (which are not necessarily independent) with the series ∑n=1 ∞Vn converging unconditionally in probability and an infinite array a={ani,i≥n,n≥1} of constants, conditions are given under which (i) for all n≥1, the sequence of weighted sums ∑i=n maniVi converges in probability to a random element Tn(a) as m→∞, and (ii) Tn(a)→P0 uniformly in a as n→∞ where a is in a suitably restricted class of infinite arrays. The key tool used in the proof is a theorem of Ryll-Nardzewski and Woyczyński (1975, Proc. Amer. Math. Soc. 53, 96-98). © 2000 Elsevier Science B.V. | |
dc.relation.ispartofseries | Statistics and Probability Letters | |
dc.subject | 60B12 | |
dc.subject | 60F05 | |
dc.subject | Converge in probability | |
dc.subject | Converge unconditionally in probability | |
dc.subject | Real separable Banach space | |
dc.subject | Tail series | |
dc.subject | Uniform weak law of large numbers | |
dc.subject | Weighted sums of random elements | |
dc.title | An application of the Ryll-Nardzewski-Woyczyński theorem to a uniform weak law for tail series of weighted sums of random elements in Banach spaces | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 48 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 369 | |
dc.source.id | SCOPUS01677152-2000-48-4-SID0043280984 |