Показать сокращенную информацию
dc.contributor.author | Bikchentaev A. | |
dc.contributor.author | Tikhonov O. | |
dc.date.accessioned | 2018-09-17T21:33:28Z | |
dc.date.available | 2018-09-17T21:33:28Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 1443-5756 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135146 | |
dc.description.abstract | Let φ be a positive linear functional on the algebra of n × n complex matrices and p, q be positive numbers such that 1/p + 1/q = 1. We prove that if for any pair A, B of positive semi-definite n × n matrices the inequality φ(|AB|) ≤ φ/(Ap)/p + φ/(Bq)/q holds, then φ is a positive scalar multiple of the trace. © 2005 Victoria University. All rights reserved. | |
dc.relation.ispartofseries | Journal of Inequalities in Pure and Applied Mathematics | |
dc.subject | Characterization of the trace | |
dc.subject | Matrix Young's inequality | |
dc.title | Characterization of the trace by young's inequality | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 6 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS14435756-2005-6-2-SID27344450108 |