dc.contributor.author |
Konnov I. |
|
dc.contributor.author |
Kum S. |
|
dc.contributor.author |
Lee G. |
|
dc.date.accessioned |
2018-09-17T21:32:57Z |
|
dc.date.available |
2018-09-17T21:32:57Z |
|
dc.date.issued |
2002 |
|
dc.identifier.issn |
1432-2994 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135135 |
|
dc.description.abstract |
In this paper, properties of differentiable gap functions for variational inequalities and convergence of the corresponding descent methods under a Hilbert space setting are considered. We give various convergence results under different assumptions on the cost mapping, including the monotone case. |
|
dc.relation.ispartofseries |
Mathematical Methods of Operations Research |
|
dc.subject |
Descent Method |
|
dc.subject |
Gap Function |
|
dc.subject |
Variational Inequality |
|
dc.title |
On convergence of descent methods for variational inequalities in a Hilbert space |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
371 |
|
dc.source.id |
SCOPUS14322994-2002-55-3-SID0036611160 |
|