| dc.contributor.author | Konnov I. | |
| dc.contributor.author | Kum S. | |
| dc.contributor.author | Lee G. | |
| dc.date.accessioned | 2018-09-17T21:32:57Z | |
| dc.date.available | 2018-09-17T21:32:57Z | |
| dc.date.issued | 2002 | |
| dc.identifier.issn | 1432-2994 | |
| dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135135 | |
| dc.description.abstract | In this paper, properties of differentiable gap functions for variational inequalities and convergence of the corresponding descent methods under a Hilbert space setting are considered. We give various convergence results under different assumptions on the cost mapping, including the monotone case. | |
| dc.relation.ispartofseries | Mathematical Methods of Operations Research | |
| dc.subject | Descent Method | |
| dc.subject | Gap Function | |
| dc.subject | Variational Inequality | |
| dc.title | On convergence of descent methods for variational inequalities in a Hilbert space | |
| dc.type | Article | |
| dc.relation.ispartofseries-issue | 3 | |
| dc.relation.ispartofseries-volume | 55 | |
| dc.collection | Публикации сотрудников КФУ | |
| dc.relation.startpage | 371 | |
| dc.source.id | SCOPUS14322994-2002-55-3-SID0036611160 |