Показать сокращенную информацию
dc.contributor.author | Tronin S. | |
dc.date.accessioned | 2018-09-17T21:15:33Z | |
dc.date.available | 2018-09-17T21:15:33Z | |
dc.date.issued | 1997 | |
dc.identifier.issn | 1064-5616 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/134749 | |
dc.description.abstract | Main result. If finite direct products exist in a category k and the class of morphisms Σ is such that the category of fractions k[Σ -1] exists, where σ ∈ Σ implies that σ × 1 X ∈ Σ and 1 X × σ ∈ Σ for any objects X, then finite direct products also exist in k[Σ -1] and the canonical functor k → k[Σ -1] preserves these products. Using this theorem analogues of the theory of matrix localization of rings are constructed for arbitrary varieties of universal algebras and for preadditive categories. | |
dc.relation.ispartofseries | Sbornik Mathematics | |
dc.title | Products in categories of fractions and universal inversion of homomorphisms | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 9-10 | |
dc.relation.ispartofseries-volume | 188 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1521 | |
dc.source.id | SCOPUS10645616-1997-188-910-SID5944222674 |