dc.contributor.author |
Tronin S. |
|
dc.date.accessioned |
2018-09-17T21:15:33Z |
|
dc.date.available |
2018-09-17T21:15:33Z |
|
dc.date.issued |
1997 |
|
dc.identifier.issn |
1064-5616 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/134749 |
|
dc.description.abstract |
Main result. If finite direct products exist in a category k and the class of morphisms Σ is such that the category of fractions k[Σ -1] exists, where σ ∈ Σ implies that σ × 1 X ∈ Σ and 1 X × σ ∈ Σ for any objects X, then finite direct products also exist in k[Σ -1] and the canonical functor k → k[Σ -1] preserves these products. Using this theorem analogues of the theory of matrix localization of rings are constructed for arbitrary varieties of universal algebras and for preadditive categories. |
|
dc.relation.ispartofseries |
Sbornik Mathematics |
|
dc.title |
Products in categories of fractions and universal inversion of homomorphisms |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
9-10 |
|
dc.relation.ispartofseries-volume |
188 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1521 |
|
dc.source.id |
SCOPUS10645616-1997-188-910-SID5944222674 |
|