Показать сокращенную информацию
dc.contributor.author | Konnov I. | |
dc.date.accessioned | 2018-09-17T21:03:18Z | |
dc.date.available | 2018-09-17T21:03:18Z | |
dc.date.issued | 2002 | |
dc.identifier.issn | 1055-6788 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/134458 | |
dc.description.abstract | When applied to variational inequalities, combined relaxation (CR) methods are convergent under mild assumptions. Namely, the underlying mapping need not be strictly monotone. In this paper, we describe a class of CR methods for nonlinear variational inequality problems (NVI), which involve two, rather than one, nonlinear mappings and a nonsmooth convex function. We establish a convergence result for the CR method in the monotone case and also show that it attains a linear rate of convergence under the additional strong monotonicity assumption. Implementation issues are also discussed. | |
dc.relation.ispartofseries | Optimization Methods and Software | |
dc.subject | Combined relaxation method | |
dc.subject | Linear convergence | |
dc.subject | Monotone nonlinear variational inequalities | |
dc.subject | Non-smooth convex function | |
dc.title | A combined relaxation method for nonlinear variational inequalities | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 17 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 271 | |
dc.source.id | SCOPUS10556788-2002-17-2-SID0036526064 |