Показать сокращенную информацию
dc.contributor.author | Konnov I. | |
dc.date.accessioned | 2018-09-17T20:58:21Z | |
dc.date.available | 2018-09-17T20:58:21Z | |
dc.date.issued | 2000 | |
dc.identifier.issn | 0965-5425 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/134335 | |
dc.description.abstract | A simple iterative method for variational inequalities with a set-valued main operator is considered. The method requires no a priori knowledge of the problem's characteristics and converges if a solution to the dual variational inequality exists, which is a weaker assumption than the requirement that the main operator be quasi-monotone. The method is shown to have a logarithmic running time, which corresponds to a linear rate of convergence. Copyright © 2000 by MAIK "Nauka/Interperiodica". | |
dc.relation.ispartofseries | Computational Mathematics and Mathematical Physics | |
dc.title | Complexity bounds for a combined relaxation method | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 40 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 70 | |
dc.source.id | SCOPUS09655425-2000-40-1-SID33746988197 |