dc.contributor.author |
Adler A. |
|
dc.contributor.author |
Rosalsky A. |
|
dc.contributor.author |
Volodin A. |
|
dc.date.accessioned |
2018-09-17T20:49:29Z |
|
dc.date.available |
2018-09-17T20:49:29Z |
|
dc.date.issued |
1997 |
|
dc.identifier.issn |
0894-9840 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/134113 |
|
dc.description.abstract |
For a sequence of constants {an, n ≥ 1}, an array of rowwise independent and stochastically dominated random elements {Vnj, j ≥ 1, n ≥ 1} in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space, and a sequence of positive integer-valued random variables {Tn, n ≥ 1}, a general weak law of large numbers of the form ∑Tn j = 1 aj(Vnj-cnj)/b[αn] →p 0 is established where {cnj, j ≥ 1, n ≥ 1}, αn → ∞, bn → ∞ are suitable sequences. Some related results are also presented. No assumption is made concerning the existence of expected values or absolute moments of the {Vnj, j ≥ 1, n ≥ 1}. Illustrative examples include one wherein the strong law of large numbers fails. |
|
dc.relation.ispartofseries |
Journal of Theoretical Probability |
|
dc.subject |
Array of rowwise independent random elements |
|
dc.subject |
Rademacher type p Banach space |
|
dc.subject |
Random indices |
|
dc.subject |
Weak law of large numbers |
|
dc.subject |
Weighted sums |
|
dc.title |
Weak Laws with Random Indices for Arrays of Random Elements in Rademacher Type p Banach Spaces |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
10 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
605 |
|
dc.source.id |
SCOPUS08949840-1997-10-3-SID0031477386 |
|