Показать сокращенную информацию
dc.contributor.author | Krut'eva M. | |
dc.contributor.author | Fatkullin N. | |
dc.contributor.author | Kimmich R. | |
dc.date.accessioned | 2018-09-17T20:45:04Z | |
dc.date.available | 2018-09-17T20:45:04Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 0507-5475 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133988 | |
dc.description.abstract | The dynamic properties of n-renormalized Rouse models (n = 1, 2) were numerically investigated. Within two decay orders of magnitude, the damping of normal Rouse modes of a polymer chain was shown to be approximated by a stretched exponential function Cp(t) ∝ exp([-(t/ τ*p)βp , where βp is the stretching parameter dependent on the number p of the Rouse mode and τ*p is the characteristic decay time. The dependence of the stretching parameter on the mode number has a minimum. It was found that the nonexponential form of autocorrelation functions of the normal modes affects the dynamic characteristics of a polymer chain: the mean-square segment displacement 〈r2(t)〉nRR and the autocorrelation function of the tangential vector 〈b(t)b(0)〉nRR In comparison with the Markov approximation, the 〈r2(t) 〉TRR and 〉b(t)b(0)〉TRR values in the twice-normalized Rouse model change over time at a lesser rate: ∝t 0.31 and ∝-0.31 at times t ≪ τ p TRR, respectively. The effect of the finite dimensions of the polymer chain on the relaxation times of the normal modes was studied. | |
dc.relation.ispartofseries | Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya | |
dc.title | Numerical study of dynamical properties of entangled polymer melts in terms of renormalized rouse models | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 9 | |
dc.relation.ispartofseries-volume | 47 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1726 | |
dc.source.id | SCOPUS05075475-2005-47-9-SID33747714536 |