Показать сокращенную информацию
dc.contributor.author | Tikhonov O. | |
dc.date.accessioned | 2018-09-17T20:40:39Z | |
dc.date.available | 2018-09-17T20:40:39Z | |
dc.date.issued | 1998 | |
dc.identifier.issn | 0308-1087 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133867 | |
dc.description.abstract | Let f be a real-valued function on [0, ∞) with f(0) = 0 and n be a natural number greater than 1. We prove that if f is matrix-subadditive of ordern then it has the form f(t) = αt for some α ∈ ℝ. Moreover, we show that if the inequality Tr (f(A + B)) ≤ Tr(f(A)) + Tr (f (B)) holds true for every pair A, B of Hermitian positive semidefinite n × n-matrices then f is concave. © 1998 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license under the Gordon and Breach Science Publishers imprint. | |
dc.relation.ispartofseries | Linear and Multilinear Algebra | |
dc.subject | Matrix-subadditive function | |
dc.subject | Trace inequality of subadditivity | |
dc.title | On matrix-subadditive functions and a relevant trace inequality | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 44 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 25 | |
dc.source.id | SCOPUS03081087-1998-44-1-SID22044451780 |