Kazan Federal University Digital Repository

On matrix-subadditive functions and a relevant trace inequality

Show simple item record

dc.contributor.author Tikhonov O.
dc.date.accessioned 2018-09-17T20:40:39Z
dc.date.available 2018-09-17T20:40:39Z
dc.date.issued 1998
dc.identifier.issn 0308-1087
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/133867
dc.description.abstract Let f be a real-valued function on [0, ∞) with f(0) = 0 and n be a natural number greater than 1. We prove that if f is matrix-subadditive of ordern then it has the form f(t) = αt for some α ∈ ℝ. Moreover, we show that if the inequality Tr (f(A + B)) ≤ Tr(f(A)) + Tr (f (B)) holds true for every pair A, B of Hermitian positive semidefinite n × n-matrices then f is concave. © 1998 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license under the Gordon and Breach Science Publishers imprint.
dc.relation.ispartofseries Linear and Multilinear Algebra
dc.subject Matrix-subadditive function
dc.subject Trace inequality of subadditivity
dc.title On matrix-subadditive functions and a relevant trace inequality
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 44
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 25
dc.source.id SCOPUS03081087-1998-44-1-SID22044451780


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics