dc.contributor.author |
Tikhonov O. |
|
dc.date.accessioned |
2018-09-17T20:40:39Z |
|
dc.date.available |
2018-09-17T20:40:39Z |
|
dc.date.issued |
1998 |
|
dc.identifier.issn |
0308-1087 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/133867 |
|
dc.description.abstract |
Let f be a real-valued function on [0, ∞) with f(0) = 0 and n be a natural number greater than 1. We prove that if f is matrix-subadditive of ordern then it has the form f(t) = αt for some α ∈ ℝ. Moreover, we show that if the inequality Tr (f(A + B)) ≤ Tr(f(A)) + Tr (f (B)) holds true for every pair A, B of Hermitian positive semidefinite n × n-matrices then f is concave. © 1998 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license under the Gordon and Breach Science Publishers imprint. |
|
dc.relation.ispartofseries |
Linear and Multilinear Algebra |
|
dc.subject |
Matrix-subadditive function |
|
dc.subject |
Trace inequality of subadditivity |
|
dc.title |
On matrix-subadditive functions and a relevant trace inequality |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
44 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
25 |
|
dc.source.id |
SCOPUS03081087-1998-44-1-SID22044451780 |
|