dc.contributor.author |
Hong D. |
|
dc.contributor.author |
Volodin A. |
|
dc.date.accessioned |
2018-09-17T20:40:05Z |
|
dc.date.available |
2018-09-17T20:40:05Z |
|
dc.date.issued |
1999 |
|
dc.identifier.issn |
0304-9914 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/133855 |
|
dc.description.abstract |
Chatterji strengthened version of a theorem for martingales which is a generalization of a theorem of Marcinkiewicz proving that if Xn is a sequence of independent, identically distributed random variables with E|X n|p < ∞, 0 < p < 2 and EX1 = 0 if 1 ≤ p ≤ 2, then n-1/p ∑i=1 n → 0 a.s. and in Lp. In this paper, we prove a version of law of large numbers for double arrays. If {Xij} is a double sequence of random variables with E|X11|p log+ |X 11|p < ∞, 0 < p < 2, then lim mVn→∞ ∑i=1 m ∑ j=1 n (Xij-aij/(mn)1/p = 0 a.s. and in Lp, where aij = 0 if 0 < p < 1, and a ij = E[Xij|Fij] if 1 ≤ p ≤ 2, which is a generalization of Etemadi's Marcinkiewicz-type SLLN for double arrays. This also generalize earlier results of Smythe, and Gut for double arrays of i.i.d. r.v's. |
|
dc.relation.ispartofseries |
Journal of the Korean Mathematical Society |
|
dc.subject |
Double arrays |
|
dc.subject |
Lp convergence |
|
dc.subject |
Strong law of large numbers |
|
dc.title |
Marcinkiewicz-type law of large numbers for double arrays |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
36 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1133 |
|
dc.source.id |
SCOPUS03049914-1999-36-6-SID33645007196 |
|