Показать сокращенную информацию
dc.contributor.author | Ablayev F. | |
dc.contributor.author | Gainutdinova A. | |
dc.date.accessioned | 2018-09-17T20:39:09Z | |
dc.date.available | 2018-09-17T20:39:09Z | |
dc.date.issued | 2000 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133828 | |
dc.description.abstract | © Springer-Verlag Berlin Heidelberg 2000. In the paper we consider measured-once (MO-QFA) one way quantum finite automaton. We prove that for MO-QFA Q that (1/2+ε)-accepts (ε Є (0,1/2)) regular language L it holds that dim(formula presented). In the case ε Є (3/8,1/2) we have more precise lower bound dim(Q) = Ω (log dim(A)) where A is a minimal deterministic finite automaton accepting L, dim(Q), and dim(A) are complexity (number of states) of automata Q and A respectively, (1/2 — ε) is the error of Q. The example of language presented in [2] show that our lower bounds are tight enough. | |
dc.relation.ispartofseries | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.title | On the lower bounds for one-way quantum automata | |
dc.type | Conference Paper | |
dc.relation.ispartofseries-volume | 1893 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 132 | |
dc.source.id | SCOPUS03029743-2000-1893-SID84927690759 |