Показать сокращенную информацию
dc.contributor.author | Kharintsev S. | |
dc.contributor.author | Sevast'Yanov A. | |
dc.contributor.author | Salakhov M. | |
dc.date.accessioned | 2018-09-17T20:37:13Z | |
dc.date.available | 2018-09-17T20:37:13Z | |
dc.date.issued | 2001 | |
dc.identifier.issn | 0277-786X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133769 | |
dc.description.abstract | This paper describes regularized wavelets and numerical algorithms for a regularized wavelet-analysis based on the bayes strategy. This program includes the investigation of a possibility for finding a basis in terms of a multiresolution analysis under condition that a scaling function would satisfy the properties of a regularization operator and an orthonormal basis simultaneously. Examples of application of the regularized wavelets in the differentiation of composite simulated spectra with a fractal noise are considered. | |
dc.relation.ispartofseries | Proceedings of SPIE - The International Society for Optical Engineering | |
dc.subject | Ill-posed inverse problem | |
dc.subject | Regularization | |
dc.subject | Wavelet | |
dc.title | Regularized wavelets for processing non-stationary signals with a correlated noise | |
dc.type | Conference Paper | |
dc.relation.ispartofseries-volume | 4605 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 63 | |
dc.source.id | SCOPUS0277786X-2001-4605-SID0035769486 |