Показать сокращенную информацию
dc.contributor.author | Konnov I. | |
dc.date.accessioned | 2018-09-17T20:33:47Z | |
dc.date.available | 2018-09-17T20:33:47Z | |
dc.date.issued | 2002 | |
dc.identifier.issn | 0233-1934 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133675 | |
dc.description.abstract | Combined relaxation methods are convergent to a solution of variational inequality problems under rather mild assumptions and admit various auxiliary procedures within their two-level structure. In this work, we consider ways to construct decomposition schemes within one class of combined relaxation methods, which maintain useful convergence properties. An application to primal-dual variational inequality problems is also given. | |
dc.relation.ispartofseries | Optimization | |
dc.subject | Combined relaxation method | |
dc.subject | Decomposition scheme | |
dc.subject | Non-monotone mapping | |
dc.subject | Variational inequalities | |
dc.title | A class of combined relaxation methods for decomposable variational inequalities | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 51 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 109 | |
dc.source.id | SCOPUS02331934-2002-51-1-SID0036486921 |