Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-17T20:32:32Z | |
dc.date.available | 2018-09-17T20:32:32Z | |
dc.date.issued | 2003 | |
dc.identifier.issn | 0176-4276 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133643 | |
dc.description.abstract | Let Ω and Π be two simply connected domains in the complex plane C which are not equal to the whole plane C and let λΩ and λΠ denote the densities of the Poincaré metric in Ω and Π, respectively. For f : Ω → Π analytic in Ω, inequalities of the type |f(n)(z)|/n! ≤ Mn (z, Ω, Π) (λΩ(z))n/λΠ(f(z)), z ∈ Ω, are considered where Mn(z, Ω, Π) does not depend on f and represents the smallest value possible at this place. We prove that Mn(z, Δ, Π) = (1 + |z|)n-1 if Δ is the unit disk and Π is a convex domain. This generalizes a result of St. Ruscheweyh. Furthermore, we show that Cn(Ω, Π) = sup{Mn(z, Ω, Π) | z ∈ Ω} ≤ 4n-1 holds for arbitrary simply connected domains whereas the inequality 2n-1 ≤ Cn(Ω, Π) is proved only under some technical restrictions upon Ω and Π. | |
dc.relation.ispartofseries | Constructive Approximation | |
dc.subject | Density of the Poincaré metric | |
dc.subject | Derivatives of arbitrary order | |
dc.subject | Schwarz-Pick lemma | |
dc.title | Schwarz-pick inequalities for derivatives of arbitrary order | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 19 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 265 | |
dc.source.id | SCOPUS01764276-2003-19-1-SID0042834158 |