Показать сокращенную информацию
dc.contributor.author | Arslanov M. | |
dc.contributor.author | Chong C. | |
dc.contributor.author | Cooper S. | |
dc.contributor.author | Yang Y. | |
dc.date.accessioned | 2018-09-17T20:31:46Z | |
dc.date.available | 2018-09-17T20:31:46Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 0168-0072 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133621 | |
dc.description.abstract | We study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle. © 2004 Elsevier B.V. All rights reserved. | |
dc.relation.ispartofseries | Annals of Pure and Applied Logic | |
dc.title | The minimal e-degree problem in fragments of Peano arithmetic | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1-3 | |
dc.relation.ispartofseries-volume | 131 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 159 | |
dc.source.id | SCOPUS01680072-2005-131-13-SID7244226325 |