dc.contributor.author |
Arslanov M. |
|
dc.contributor.author |
Chong C. |
|
dc.contributor.author |
Cooper S. |
|
dc.contributor.author |
Yang Y. |
|
dc.date.accessioned |
2018-09-17T20:31:46Z |
|
dc.date.available |
2018-09-17T20:31:46Z |
|
dc.date.issued |
2005 |
|
dc.identifier.issn |
0168-0072 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/133621 |
|
dc.description.abstract |
We study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle. © 2004 Elsevier B.V. All rights reserved. |
|
dc.relation.ispartofseries |
Annals of Pure and Applied Logic |
|
dc.title |
The minimal e-degree problem in fragments of Peano arithmetic |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1-3 |
|
dc.relation.ispartofseries-volume |
131 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
159 |
|
dc.source.id |
SCOPUS01680072-2005-131-13-SID7244226325 |
|