Kazan Federal University Digital Repository

The minimal e-degree problem in fragments of Peano arithmetic

Show simple item record

dc.contributor.author Arslanov M.
dc.contributor.author Chong C.
dc.contributor.author Cooper S.
dc.contributor.author Yang Y.
dc.date.accessioned 2018-09-17T20:31:46Z
dc.date.available 2018-09-17T20:31:46Z
dc.date.issued 2005
dc.identifier.issn 0168-0072
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/133621
dc.description.abstract We study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle. © 2004 Elsevier B.V. All rights reserved.
dc.relation.ispartofseries Annals of Pure and Applied Logic
dc.title The minimal e-degree problem in fragments of Peano arithmetic
dc.type Article
dc.relation.ispartofseries-issue 1-3
dc.relation.ispartofseries-volume 131
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 159
dc.source.id SCOPUS01680072-2005-131-13-SID7244226325


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics