Электронный архив

On the coefficients of concave univalent functions

Показать сокращенную информацию

dc.contributor.author Avkhadiev F.
dc.contributor.author Pommerenke C.
dc.contributor.author Wirths K.
dc.date.accessioned 2018-09-17T20:29:58Z
dc.date.available 2018-09-17T20:29:58Z
dc.date.issued 2004
dc.identifier.issn 0025-584X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/133574
dc.description.abstract Let D denote the open unit disc and f : D → ℂ̄ be meromorphic and injective in D. We assume that f is holomorphic at zero and has the expansion f(z) = z + ∞σ anzn Especially, we consider f that map D onto a domain whose complement with respect to ℂ̄ is convex. We call these functions concave univalent functions and denote the set of these functions by Co. We prove that the sharp inequalities |an| ≥ 1, n ∈ ℕ, are valid for all concave univalent functions. Furthermore, we consider those concave univalent functions which have their pole at a point p ∈ (0, 1) and determine the precise domain of variability for the coefficients a2 and a3 for these classes of functions. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.relation.ispartofseries Mathematische Nachrichten
dc.subject Concave univalent functions
dc.subject Taylor coefficients
dc.title On the coefficients of concave univalent functions
dc.type Article
dc.relation.ispartofseries-volume 271
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 3
dc.source.id SCOPUS0025584X-2004-271-SID4644352419


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика