Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-17T20:27:21Z | |
dc.date.available | 2018-09-17T20:27:21Z | |
dc.date.issued | 2001 | |
dc.identifier.issn | 0024-6093 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/133506 | |
dc.description.abstract | Let f be analytic in the unit disc, and let it belong to the Hardy space H p, equipped with the usual norm ∥f∥ p. It is known from the work of Hardy and Littlewood that for q > p, the constants C (p,q) :=sup{∫ 1 0(1 - r) -p/q(1/2π ∫ 2π 0 |f(re iθ)| qdθ) p/qdr|∥f∥ p = 1}, with the usual extension to the case where q = ∞, have C(p,q) < ∞. The authors prove that lim q→p( - p/q)C(p,q) = 1, inf p<q≤∞ (1 - p/q)C(p,q) = 1 and max p<q≤∞ (1 - p/q)C(p, q) = C(p, ∞) = π. | |
dc.relation.ispartofseries | Bulletin of the London Mathematical Society | |
dc.title | Asymptotically sharp bounds in the Hardy-Littlewood inequalities on mean values of analytic functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 33 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 695 | |
dc.source.id | SCOPUS00246093-2001-33-6-SID0035513328 |