Электронный архив

On the problem of boundedness of a signed measure on projections of a von Neumann algebra

Показать сокращенную информацию

dc.contributor.author Dorofeev S.
dc.date.accessioned 2018-09-17T20:21:49Z
dc.date.available 2018-09-17T20:21:49Z
dc.date.issued 1992
dc.identifier.issn 0022-1236
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/133400
dc.description.abstract Let M be a von Neumann algebra and Mn be the set of all orthogonal projections in M. We call a mapping ηMn → C a signed measure on M if η is totally orthoadditive, that is, η(∑i ε{lunate} IPi) = ε{lunate}i ε{lunate} I η(Pi) for Pi ε{lunate} Mn, Pi⊥ Pj (i ≠ j). Here the condition of boundedness is usually required for the effective study and application of signed measures. So a natural problem of the existence of unbounded signed measures arises. In the present paper it is proved that any signed measure on the set of projections of a continuous von Neumann algebra is bounded. This fact is generalized also for vector-valued measures. © 1992.
dc.relation.ispartofseries Journal of Functional Analysis
dc.title On the problem of boundedness of a signed measure on projections of a von Neumann algebra
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 103
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 209
dc.source.id SCOPUS00221236-1992-103-1-SID38249015480


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика