Показать сокращенную информацию
| dc.contributor.author | Bikchentaev A. | |
| dc.date.accessioned | 2018-09-17T20:03:49Z | |
| dc.date.available | 2018-09-17T20:03:49Z | |
| dc.date.issued | 2004 | |
| dc.identifier.issn | 0001-4346 | |
| dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/132978 | |
| dc.description.abstract | We prove that the natural embedding of the metric ideal space on a finite von Neumann algebra M into the *-algebra of measurable operators M̃ endowed with the topology of convergence in measure is continuous. Using this fact, we prove that the topology of convergence in measure is a minimal one among all metrizable topologies consistent with the ring structure on M̃. | |
| dc.relation.ispartofseries | Mathematical Notes | |
| dc.subject | *-algebra of measurable operators | |
| dc.subject | Convergence in measure | |
| dc.subject | Metric ideal space | |
| dc.subject | Von Neumann algebra | |
| dc.title | Minimality of convergence in measure topologies on finite von Neumann algebras | |
| dc.type | Article | |
| dc.relation.ispartofseries-issue | 3-4 | |
| dc.relation.ispartofseries-volume | 75 | |
| dc.collection | Публикации сотрудников КФУ | |
| dc.relation.startpage | 315 | |
| dc.source.id | SCOPUS00014346-2004-75-34-SID3543109082 |