Показать сокращенную информацию
dc.contributor.author | Nezhmetdinov I. | |
dc.date.accessioned | 2018-09-17T20:03:35Z | |
dc.date.available | 2018-09-17T20:03:35Z | |
dc.date.issued | 2001 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/132972 | |
dc.description.abstract | We study the integral operator Pλ[f](ζ) = ∫ ζ0 ζ(f′(t))λ dt, |ζ| > 1, acting on the class ∑ of functions meromorphic and univalent in the exterior of the unit disk. We refine the ranges of the parameter λ for which the operator preserves univalence either on ∑ or on its subclasses consisting of convex functions. As a consequence, a two-sided estimate is deduced for the separating constant in the sufficient condition for the univalent solvability of exterior inverse boundary-value problems. ©2001 Plenum Publishing Corporation. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | Meromorphic function | |
dc.subject | Sufficient condition for univalence | |
dc.subject | Univalence of an integral | |
dc.title | On the univalence of an integral on subclasses of meromorphic functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1-2 | |
dc.relation.ispartofseries-volume | 69 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 81 | |
dc.source.id | SCOPUS00014346-2001-69-12-SID27544506175 |