dc.contributor.author |
Nezhmetdinov I. |
|
dc.date.accessioned |
2018-09-17T20:03:35Z |
|
dc.date.available |
2018-09-17T20:03:35Z |
|
dc.date.issued |
2001 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/132972 |
|
dc.description.abstract |
We study the integral operator Pλ[f](ζ) = ∫ ζ0 ζ(f′(t))λ dt, |ζ| > 1, acting on the class ∑ of functions meromorphic and univalent in the exterior of the unit disk. We refine the ranges of the parameter λ for which the operator preserves univalence either on ∑ or on its subclasses consisting of convex functions. As a consequence, a two-sided estimate is deduced for the separating constant in the sufficient condition for the univalent solvability of exterior inverse boundary-value problems. ©2001 Plenum Publishing Corporation. |
|
dc.relation.ispartofseries |
Mathematical Notes |
|
dc.subject |
Meromorphic function |
|
dc.subject |
Sufficient condition for univalence |
|
dc.subject |
Univalence of an integral |
|
dc.title |
On the univalence of an integral on subclasses of meromorphic functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1-2 |
|
dc.relation.ispartofseries-volume |
69 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
81 |
|
dc.source.id |
SCOPUS00014346-2001-69-12-SID27544506175 |
|