Показать сокращенную информацию
dc.contributor.author | Ablyv F. | |
dc.date.accessioned | 2018-09-14T20:14:31Z | |
dc.date.available | 2018-09-14T20:14:31Z | |
dc.date.issued | 1988 | |
dc.identifier.issn | 0304-3975 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/132257 | |
dc.description.abstract | A probabilistic automaton (PA) which accepts a language with e-isolated cut point 1 2 corresponds to a PA which computes with ( 1 2-e) bounded error probability. Let P(L, e) be the minimal number of states of a PA necessary for accepting a language L with e-isolated cut point 1 2. It is shown that there are languages Lk, 1 < k < ∞ and an infinite sequence of numbers 0 < e1 < e2 < ... < 1 2 such that for all i ≥1, P(Lk,ei) P(Lk, ei+1) → 0 when k→∞. It is also shown that the probabilistic recognition of the language Wk is more effective than that of the Lk. © 1988. | |
dc.relation.ispartofseries | Theoretical Computer Science | |
dc.title | The complexity properties of probabilistic automata with isolated cut point | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 57 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 87 | |
dc.source.id | SCOPUS03043975-1988-57-1-SID0024126309 |