dc.contributor.author |
Ablyv F. |
|
dc.date.accessioned |
2018-09-14T20:14:31Z |
|
dc.date.available |
2018-09-14T20:14:31Z |
|
dc.date.issued |
1988 |
|
dc.identifier.issn |
0304-3975 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/132257 |
|
dc.description.abstract |
A probabilistic automaton (PA) which accepts a language with e-isolated cut point 1 2 corresponds to a PA which computes with ( 1 2-e) bounded error probability. Let P(L, e) be the minimal number of states of a PA necessary for accepting a language L with e-isolated cut point 1 2. It is shown that there are languages Lk, 1 < k < ∞ and an infinite sequence of numbers 0 < e1 < e2 < ... < 1 2 such that for all i ≥1, P(Lk,ei) P(Lk, ei+1) → 0 when k→∞. It is also shown that the probabilistic recognition of the language Wk is more effective than that of the Lk. © 1988. |
|
dc.relation.ispartofseries |
Theoretical Computer Science |
|
dc.title |
The complexity properties of probabilistic automata with isolated cut point |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
57 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
87 |
|
dc.source.id |
SCOPUS03043975-1988-57-1-SID0024126309 |
|