Показать сокращенную информацию
dc.contributor.author | Shirokova E. | |
dc.date.accessioned | 2018-09-14T20:04:31Z | |
dc.date.available | 2018-09-14T20:04:31Z | |
dc.date.issued | 1975 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/132096 | |
dc.description.abstract | In this paper we give an example of two convex functions in | ζ| > 1 whose arithmetic mean is nonconvex. We calculate the radius of convexity of the sum of two convex functions; it is equal to {Mathematical expression}. For functions F(ζ)=ζ+b1/ζ+..., where F′(ζ)=f(ζ)/ζ, if f(ζ) = ζ + a1/ζ+... is univalent |ζ| > 1, then the radius of univalence is the root of the equation 4E· (1/r)/K(1/r)+1/r2=3. © 1976 Plenum Publishing Corporation. | |
dc.relation.ispartofseries | Mathematical Notes of the Academy of Sciences of the USSR | |
dc.title | Some questions on the univalence of functions of the class Σ | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 18 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 828 | |
dc.source.id | SCOPUS00014346-1975-18-3-SID34250385951 |