dc.contributor.author |
Shirokova E. |
|
dc.date.accessioned |
2018-09-14T20:04:31Z |
|
dc.date.available |
2018-09-14T20:04:31Z |
|
dc.date.issued |
1975 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/132096 |
|
dc.description.abstract |
In this paper we give an example of two convex functions in | ζ| > 1 whose arithmetic mean is nonconvex. We calculate the radius of convexity of the sum of two convex functions; it is equal to {Mathematical expression}. For functions F(ζ)=ζ+b1/ζ+..., where F′(ζ)=f(ζ)/ζ, if f(ζ) = ζ + a1/ζ+... is univalent |ζ| > 1, then the radius of univalence is the root of the equation 4E· (1/r)/K(1/r)+1/r2=3. © 1976 Plenum Publishing Corporation. |
|
dc.relation.ispartofseries |
Mathematical Notes of the Academy of Sciences of the USSR |
|
dc.title |
Some questions on the univalence of functions of the class Σ |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
18 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
828 |
|
dc.source.id |
SCOPUS00014346-1975-18-3-SID34250385951 |
|