Показать сокращенную информацию
dc.contributor.author | Gibbons G. | |
dc.contributor.author | Volkov M. | |
dc.date.accessioned | 2018-04-05T07:10:44Z | |
dc.date.available | 2018-04-05T07:10:44Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 2470-0010 | |
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/130645 | |
dc.description.abstract | © 2017 American Physical Society. We show that, contrary to what is usually claimed in the literature, the zero mass limit of Kerr spacetime is not flat Minkowski space but a spacetime whose geometry is only locally flat. This limiting spacetime, as the Kerr spacetime itself, contains two asymptotic regions and hence cannot be topologically trivial. It also contains a curvature singularity, because the power-law singularity of the Weyl tensor vanishes in the limit but there remains a distributional contribution of the Ricci tensor. This spacetime can be interpreted as a wormhole sourced by a negative tension ring. We also extend the discussion to similarly interpret the zero mass limit of the Kerr-(anti-)de Sitter spacetime. | |
dc.relation.ispartofseries | Physical Review D | |
dc.title | Zero mass limit of Kerr spacetime is a wormhole | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 96 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS24700010-2017-96-2-SID85027034930 |