Электронный архив

Identifying disease-related expressions in reviews using conditional random fields

Показать сокращенную информацию

dc.contributor.author Miftahutdinov Z.
dc.contributor.author Tutubalina E.
dc.contributor.author Tropsha A.
dc.date.accessioned 2018-04-05T07:10:37Z
dc.date.available 2018-04-05T07:10:37Z
dc.date.issued 2017
dc.identifier.issn 2221-7932
dc.identifier.uri http://dspace.kpfu.ru/xmlui/handle/net/130551
dc.description.abstract As the as the volume of user-generated content in social media expands so do the potential benefits of mining social media to learn about patient conditions, drug indications, and beneficial or adverse drug reactions. In this paper, we apply Conditional Random Fields (CRF) model for extracting expressions related to diseases from patient comments. Our method utilizes hand-crafted features including contextual features, dictionaries, clusterbased and distributed word representation generated from unlabeled user posts in social media. We compare our CRF-based approach with deep recurrent neural networks and a dictionary-based approach. We examine different word embeddings generated from unlabeled user posts in social media and scientific literature. We show that CRF outperformed other methods and achieved the F1-measures of 69.1% and 79.4% on recognition of disease-related expressions in the exact and partial matching exercises, respectively. Qualitative evaluation of disease-related expressions recognized by our feature-rich CRF-based approach demonstrates the variability of reactions from patients with different health conditions.
dc.relation.ispartofseries Komp'juternaja Lingvistika i Intellektual'nye Tehnologii
dc.subject Conditional Random Fields
dc.subject CRF
dc.subject Disease named entity recognition
dc.subject Information extraction
dc.subject Opinion expressions
dc.title Identifying disease-related expressions in reviews using conditional random fields
dc.type Conference Paper
dc.relation.ispartofseries-issue 16
dc.relation.ispartofseries-volume 1
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 155
dc.source.id SCOPUS22217932-2017-1-16-SID85021794913


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика