Kazan Federal University Digital Repository

Combination of Deep Recurrent Neural Networks and Conditional Random Fields for Extracting Adverse Drug Reactions from User Reviews

Show simple item record

dc.contributor.author Tutubalina E.
dc.contributor.author Nikolenko S.
dc.date.accessioned 2018-04-05T07:10:31Z
dc.date.available 2018-04-05T07:10:31Z
dc.date.issued 2017
dc.identifier.issn 2040-2295
dc.identifier.uri http://dspace.kpfu.ru/xmlui/handle/net/130498
dc.description.abstract © 2017 Elena Tutubalina and Sergey Nikolenko. Adverse drug reactions (ADRs) are an essential part of the analysis of drug use, measuring drug use benefits, and making policy decisions. Traditional channels for identifying ADRs are reliable but very slow and only produce a small amount of data. Text reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form text is a challenging natural language processing problem. In this work, we propose a novel model for this problem, uniting recurrent neural architectures and conditional random fields. We evaluate our model with a comprehensive experimental study, showing improvements over state-of-the-art methods of ADR extraction.
dc.relation.ispartofseries Journal of Healthcare Engineering
dc.title Combination of Deep Recurrent Neural Networks and Conditional Random Fields for Extracting Adverse Drug Reactions from User Reviews
dc.type Article
dc.relation.ispartofseries-volume 2017
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS20402295-2017-2017-SID85029668695


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics