Электронный архив

DruGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico

Показать сокращенную информацию

dc.contributor.author Kadurin A.
dc.contributor.author Nikolenko S.
dc.contributor.author Khrabrov K.
dc.contributor.author Aliper A.
dc.contributor.author Zhavoronkov A.
dc.date.accessioned 2018-04-05T07:09:53Z
dc.date.available 2018-04-05T07:09:53Z
dc.date.issued 2017
dc.identifier.issn 1543-8384
dc.identifier.uri http://dspace.kpfu.ru/xmlui/handle/net/130041
dc.description.abstract © 2017 American Chemical Society. Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
dc.relation.ispartofseries Molecular Pharmaceutics
dc.subject adversarial autoencoder
dc.subject deep learning
dc.subject drug discovery
dc.subject generative adversarial network
dc.subject variational autoencoder
dc.title DruGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico
dc.type Article
dc.relation.ispartofseries-issue 9
dc.relation.ispartofseries-volume 14
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 3098
dc.source.id SCOPUS15438384-2017-14-9-SID85028890248


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика