Электронный архив

Exploring convolutional neural networks and topic models for user profiling from drug reviews

Показать сокращенную информацию

dc.contributor.author Tutubalina E.
dc.contributor.author Nikolenko S.
dc.date.accessioned 2018-04-05T07:09:51Z
dc.date.available 2018-04-05T07:09:51Z
dc.date.issued 2017
dc.identifier.issn 1380-7501
dc.identifier.uri http://dspace.kpfu.ru/xmlui/handle/net/130009
dc.description.abstract © 2017 Springer Science+Business Media, LLC Pharmacovigilance, and generally applications of natural language processing models to healthcare, have attracted growing attention over the recent years. In particular, drug reactions can be extracted from user reviews posted on the Web, and automated processing of this information represents a novel and exciting approach to personalized medicine and wide-scale drug tests. In medical applications, demographic information regarding the authors of these reviews such as age and gender is of primary importance; however, existing studies usually either assume that this information is available or overlook the issue entirely. In this work, we propose and compare several approaches to automated mining of demographic information from user-generated texts. We compare modern natural language processing techniques, including extensions of topic models and convolutional neural networks (CNN). We apply single-task and multi-task learning approaches to this problem. Based on a real-world dataset mined from a health-related web site, we conclude that while CNNs perform best in terms of predicting demographic information by jointly learning different user attributes, topic models provide additional information and reflect gender-specific and age-specific symptom profiles that may be of interest for a researcher.
dc.relation.ispartofseries Multimedia Tools and Applications
dc.subject Convolutional neural networks
dc.subject Deep learning
dc.subject Demographic attributes
dc.subject Demographic prediction
dc.subject Mental health
dc.subject Multi-task learning
dc.subject Natural language processing
dc.subject Single-task learning
dc.subject Social media
dc.subject Text mining
dc.subject Topic modeling
dc.subject User reviews
dc.title Exploring convolutional neural networks and topic models for user profiling from drug reviews
dc.type Article in Press
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1
dc.source.id SCOPUS13807501-2017-SID85033379716


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика