Показать сокращенную информацию
dc.contributor.author | Sharifullina F. | |
dc.date.accessioned | 2018-04-05T07:09:33Z | |
dc.date.available | 2018-04-05T07:09:33Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/129822 | |
dc.description.abstract | © 2017, Allerton Press, Inc. A natural number n is called y-smooth (y-powersmooth, respectively) for a positive number y if every prime (prime power) dividing n is bounded from above by y. Let ψ(x, y) and ψ*(x, y) denote the quantity of y-smooth and y-powersmooth integers restricted by x, respectively. In this paper we investigate function ψ*(x, y) in general. We derive formulas for finding exact calculation of ψ*(x, y) for large x and relatively small y and give theoretical estimates for this function and for a function of the greatest powersmooth integer. This results can be used in the cryptography and number theory to estimate the convergence of factorization algorithms. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | estimates for cryptographic algorithms | |
dc.subject | factorization | |
dc.subject | Lenstra’s elliptic curve factorization method | |
dc.subject | Pollard’s (p − 1)-factorization algorithm | |
dc.subject | powersmooth integers | |
dc.subject | RSA | |
dc.subject | smooth integers | |
dc.title | On powersmooth numbers | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 11 | |
dc.relation.ispartofseries-volume | 61 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 53 | |
dc.source.id | SCOPUS1066369X-2017-61-11-SID85032356477 |