dc.contributor.author |
Sharifullina F. |
|
dc.date.accessioned |
2018-04-05T07:09:33Z |
|
dc.date.available |
2018-04-05T07:09:33Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
http://dspace.kpfu.ru/xmlui/handle/net/129822 |
|
dc.description.abstract |
© 2017, Allerton Press, Inc. A natural number n is called y-smooth (y-powersmooth, respectively) for a positive number y if every prime (prime power) dividing n is bounded from above by y. Let ψ(x, y) and ψ*(x, y) denote the quantity of y-smooth and y-powersmooth integers restricted by x, respectively. In this paper we investigate function ψ*(x, y) in general. We derive formulas for finding exact calculation of ψ*(x, y) for large x and relatively small y and give theoretical estimates for this function and for a function of the greatest powersmooth integer. This results can be used in the cryptography and number theory to estimate the convergence of factorization algorithms. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
estimates for cryptographic algorithms |
|
dc.subject |
factorization |
|
dc.subject |
Lenstra’s elliptic curve factorization method |
|
dc.subject |
Pollard’s (p − 1)-factorization algorithm |
|
dc.subject |
powersmooth integers |
|
dc.subject |
RSA |
|
dc.subject |
smooth integers |
|
dc.title |
On powersmooth numbers |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
11 |
|
dc.relation.ispartofseries-volume |
61 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
53 |
|
dc.source.id |
SCOPUS1066369X-2017-61-11-SID85032356477 |
|