Показать сокращенную информацию
dc.contributor.author | Al Nafie Z. | |
dc.date.accessioned | 2018-04-05T07:09:33Z | |
dc.date.available | 2018-04-05T07:09:33Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/129820 | |
dc.description.abstract | © 2017, Allerton Press, Inc. In the present paper we prove a criterion of Lip k -paracompactness for infinitedimensional manifold M modeled in nonnormable topological vector Fréchet space F. We establish that a manifold is Lip k -paracompact if and only if the model space F is paracompact and Lip k -normal. We prove a sufficient condition for existence of Lip k -partition of a unity on a manifold of class Lip k . | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | convenient topological vector space | |
dc.subject | infinite-dimensional manifold | |
dc.subject | nonnormable Fréchet space | |
dc.subject | paracompactness | |
dc.subject | partition of unity | |
dc.title | Partition of a unity on infinite-dimensional manifold of the Lipschiz class Lip<sup>k</sup> | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 10 | |
dc.relation.ispartofseries-volume | 61 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 5 | |
dc.source.id | SCOPUS1066369X-2017-61-10-SID85030870620 |