dc.contributor.author |
Al Nafie Z. |
|
dc.date.accessioned |
2018-04-05T07:09:33Z |
|
dc.date.available |
2018-04-05T07:09:33Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
http://dspace.kpfu.ru/xmlui/handle/net/129820 |
|
dc.description.abstract |
© 2017, Allerton Press, Inc. In the present paper we prove a criterion of Lip k -paracompactness for infinitedimensional manifold M modeled in nonnormable topological vector Fréchet space F. We establish that a manifold is Lip k -paracompact if and only if the model space F is paracompact and Lip k -normal. We prove a sufficient condition for existence of Lip k -partition of a unity on a manifold of class Lip k . |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
convenient topological vector space |
|
dc.subject |
infinite-dimensional manifold |
|
dc.subject |
nonnormable Fréchet space |
|
dc.subject |
paracompactness |
|
dc.subject |
partition of unity |
|
dc.title |
Partition of a unity on infinite-dimensional manifold of the Lipschiz class Lip<sup>k</sup> |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
10 |
|
dc.relation.ispartofseries-volume |
61 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
5 |
|
dc.source.id |
SCOPUS1066369X-2017-61-10-SID85030870620 |
|