Kazan Federal University Digital Repository

Gradient methods with regularization for constrained optimization problems and their complexity estimates

Show simple item record

dc.contributor.author Konnov I.
dc.date.accessioned 2018-04-05T07:09:16Z
dc.date.available 2018-04-05T07:09:16Z
dc.date.issued 2017
dc.identifier.issn 0233-1934
dc.identifier.uri http://dspace.kpfu.ru/xmlui/handle/net/129619
dc.description.abstract © 2017 Informa UK Limited, trading as Taylor & Francis Group We suggest simple implementable modifications of conditional gradient and gradient projection methods for smooth convex optimization problems in Hilbert spaces. Usually, the custom methods attain only weak convergence. We prove strong convergence of the new versions and establish their complexity estimates, which appear similar to the convergence rate of the weakly convergent versions. Preliminary results of computational tests confirm efficiency of the proposed modification.
dc.relation.ispartofseries Optimization
dc.subject complexity estimates
dc.subject conditional gradient method
dc.subject Convex optimization
dc.subject gradient projection method
dc.subject Hilbert space
dc.subject strong convergence
dc.title Gradient methods with regularization for constrained optimization problems and their complexity estimates
dc.type Article in Press
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1
dc.source.id SCOPUS02331934-2017-SID85038615645


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics