Показать сокращенную информацию
dc.contributor.author | Faizrakhmanov M. | |
dc.date.accessioned | 2018-04-05T07:08:50Z | |
dc.date.available | 2018-04-05T07:08:50Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0002-5232 | |
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/129358 | |
dc.description.abstract | © 2017, Springer Science+Business Media, LLC, part of Springer Nature. Generalized computable numberings relative to hyperimmune and high oracles are studied. We give a description of oracles relative to which every finite computable family has a universal computable numbering. Also we present a characterization of the class of oracles relative to which every universal computable numbering of an arbitrary finite family is precomplete, and establish a sufficient condition for universal generalized computable numberings to be precomplete. In addition, we look into the question on limitedness of universal numberings computable relative to high oracles. | |
dc.relation.ispartofseries | Algebra and Logic | |
dc.subject | generalized computable numbering | |
dc.subject | high set | |
dc.subject | hyperimmune set | |
dc.subject | precomplete numbering | |
dc.subject | universal numbering | |
dc.title | Universal Generalized Computable Numberings and Hyperimmunity | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 56 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 337 | |
dc.source.id | SCOPUS00025232-2017-56-4-SID85033405246 |