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Abstract

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. The problem
of ad-hoc structured document retrieval arises in many information access scenarios, from Web
to product search. Yet neither deep neural networks, which have been successfully applied to
ad-hoc information retrieval and Web search, nor the attention mechanism, which has been
shown to significantly improve the performance of deep neural networks on natural language
processing tasks, have been explored in the context of this problem. In this paper, we propose a
deep neural  architecture for  ad-hoc structured document  retrieval,  which utilizes  attention
mechanism  to  determine  important  phrases  in  keyword  queries  as  well  as  the  relative
importance of matching those phrases in different fields of structured documents. Experimental
evaluation on publicly available collections for Web document, product and entity retrieval from
knowledge graphs indicates superior retrieval accuracy of the proposed neural architecture
relative  to  both  state-of-the-art  neural  architectures  for  ad-hoc  document  retrieval  and
probabilistic models for ad-hoc structured document retrieval.
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