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Abstract

©  2018  Gerasimenko,  Sayenko,  Gad,  Kozesnik,  Moshonkina,  Grishin,  Pukhov,  Moiseev,
Gorodnichev, Selionov, Kozlovskaya and Edgerton. Neuronal control of stepping movement in
healthy human is based on integration between brain, spinal neuronal networks, and sensory
signals. It  is generally recognized that there are continuously occurring adjustments in the
physiological states of supraspinal centers during all routines movements. For example, visual
as  well  as  all  other  sources  of  information  regarding  the  subject's  environment.  These
multimodal inputs to the brain normally play an important role in providing a feedforward source
of control. We propose that the brain routinely uses these continuously updated assessments of
the environment to provide additional feedforward messages to the spinal networks, which
provides a synergistic feedforwardness for the brain and spinal cord. We tested this hypothesis
in 8 non-injured individuals placed in gravity neutral position with the lower limbs extended
beyond the edge of the table, but supported vertically, to facilitate rhythmic stepping. The
experiment was performed while visualizing on the monitor a stick figure mimicking bilateral
stepping or being motionless. Non-invasive electrical stimulation was used to neuromodulate a
wide range of excitabilities of the lumbosacral spinal segments that would trigger rhythmic
stepping movements. We observed that at the same intensity level of transcutaneous electrical
spinal cord stimulation (tSCS), the presence or absence of visualizing a stepping-like movement
of a stick figure immediately initiated or terminated the tSCS-induced rhythmic stepping motion,
respectively. We also demonstrated that during both voluntary and imagined stepping, the
motor  potentials  in  leg muscles were facilitated when evoked cortically,  using transcranial
magnetic stimulation (TMS), and inhibited when evoked spinally, using tSCS. These data suggest
that the ongoing assessment of the environment within the supraspinal centers that play a role
in planning a movement can routinely modulate the physiological state of spinal networks that
further facilitates a synergistic neuromodulation of the brain and spinal cord in preparing for
movements.
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