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Abstract

c  2018  The  Author(s).  The  role  of  water  in  oxime-mediated  reactivation  of  phosphylated
cholinesterases (ChEs) has been asked with recurrence. To investigate oximate water structure
changes in this reaction, reactivation of paraoxon-inhibited human acetylcholinesterase (AChE)
was performed by the oxime asoxime (HI-6) at different pH in the presence and absence of
lyotropic salts: a neutral salt (NaCl), a strong chaotropic salt (LiSCN) and strong kosmotropic
salts (ammonium sulphate and phosphate HPO42−). At the same time, molecular dynamic (MD)
simulations of enzyme reactivation under the same conditions were performed over 100 ns.
Reactivation  kinetics  showed  that  the  low  concentration  of  chaotropic  salt  up  to  75  mM
increased the percentage of reactivation of diethylphosphorylated AChE whereas kosmotropic
salts lead only to a small decrease in reactivation. This indicates that water-breaker salt induces
de-structuration of water molecules that are electrostricted around oximate ions. Desolvation of
oximate favors  nucleophilic  attack on the phosphorus  atom.  Effects  observed at  high salt
concentrations (>100 mM) result either from salting-out of the enzyme by kosmotropic salts
(phosphate and ammonium sulphate) or denaturing action of chaotropic LiSCN. MDs simulations
of diethylphosphorylated hAChE complex with HI-6 over 100 ns were performed in the presence
of 100 mM (NH4)2SO4 and 50 mM LiSCN. In the presence of LiSCN, it was found that protein and
water  have a  higher  mobility,  i.e.  water  is  less  organized,  compared with  the ammonium
sulphate  system.  LiSCN  favors  protein  solvation  (hydrophobic  hydration)  and  breakage  of
elelectrostricted water molecules around of oximate ion. As a result, more free water molecules
participated to reaction steps accompanying oxime-mediated dephosphorylation.
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