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Abstract

© 2018 National Academy of Sciences. All Rights Reserved. Fibrin formation and mechanical
stability are essential in thrombosis and hemostasis. To reveal how mechanical load impacts
fibrin, we carried out optical trap-based single-molecule forced unbinding experiments. The
strength of  noncovalent  A:a  knob-hole  bond stabilizing fibrin  polymers  first  increases  with
tensile force (catch bonds) and then decreases with force when the force exceeds a critical
value (slip bonds). To provide the structural basis of catch–slip-bond behavior, we analyzed
crystal structures and performed molecular modeling of A:a knob-hole complex. The movable
flap (residues γ295 to γ305) containing the weak calcium-binding site γ2 serves as a tension
sensor.  Flap dissociation from the B domain in the γ-nodule and translocation to knob ‘A’
triggers  hole  ‘a’  closure,  resulting  in  the  increase  of  binding  affinity  and  prolonged bond
lifetimes.  The  discovery  of  biphasic  kinetics  of  knob-hole  bond  rupture  is  quantitatively
explained by using a theory, formulated in terms of structural transitions in the binding pocket
between the low-affinity (slip) and high-affinity (catch) states. We provide a general framework
to understand the mechanical response of protein pairs capable of tension-induced remodeling
of their association interface. Strengthening of the A:a knob-hole bonds at 30- to 40-pN forces
might favor formation of nascent fibrin clots subject to hydrodynamic shear in vivo.
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