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Abstract

© 2018 National Academy of Sciences. All  Rights Reserved. Polypedilum vanderplanki is  a
striking and unique example of an insect that can survive almost complete desiccation. Its
genome and a set of dehydration–rehydration transcriptomes, together with the genome of
Polypedilum nubifer (a congeneric desiccation-sensitive midge), were recently released. Here,
using published and newly generated datasets reflecting detailed transcriptome changes during
anhydrobiosis, as well as a developmental series, we show that the TCTAGAA DNA motif, which
closely resembles the binding motif of the Drosophila melanogaster heat shock transcription
activator (Hsf), is significantly enriched in the promoter regions of desiccation-induced genes in
P.  vanderplanki,  such  as  genes  encoding  late  embryogenesis  abundant  (LEA)  proteins,
thioredoxins, or trehalose metabolism-related genes, but not in P. nubifer. Unlike P. nubifer, P.
vanderplanki has double TCTAGAA sites upstream of the Hsf gene itself,  which is probably
responsible for the stronger activation of Hsf in P. vanderplanki during desiccation compared
with P. nubifer. To confirm the role of Hsf in desiccation-induced gene activation, we used the
Pv11 cell line, derived from P. vanderplanki embryo. After preincubation with trehalose, Pv11
cells  can  enter  anhydrobiosis  and  survive  desiccation.  We  showed  that  Hsf  knockdown
suppresses  trehalose-induced  activation  of  multiple  predicted  Hsf  targets  (including  P.
vanderplanki-specific LEA protein genes) and reduces the desiccation survival rate of Pv11 cells
fivefold. Thus, cooption of the heat shock regulatory system has been an important evolutionary
mechanism for adaptation to desiccation in P. vanderplanki.
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