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Abstract

© 2016, Springer Science+Business Media New York.One of the most promising approaches to
stimulate regeneration and angiogenesis in traumatic or ischemic tissue damage is stem cell
therapy.  Embryonic  and fetal  stem cells  have the greatest  potential  of  differentiation into
different  cell  types;  however,  at  the  same time,  they  carry  the  highest  risk  of  teratoma
formation. Adult stem cells have the potential risk of transformation during prolonged cultivation
in vitro, or as a result of genetic changes during gene-cell therapy applications. In this regard,
technologies that can reduce the potential risks of cell and gene-cell therapy are of particular
interest. According to the paracrine hypothesis, the beneficial effect of stem cell therapy is due
to stimulation of resident cells by cell-to-cell contacts, secretion of bioactive molecules, and
release of extracellular vesicles. In this review, we discuss the development of regenerative
medicine from cell to cell-free therapy based on extracellular vesicles.
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