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Abstract

© 2017, Allerton Press, Inc.Let M be a von Neumann algebra of operators on a Hilbert space H, τ
be a faithful normal semifinite trace on M. We define two (closed in the topology of convergence
in measure τ) classes P1 and P2 of τ-measurable operators and investigate their properties. The
class P2 contains P1. If a τ-measurable operator T is hyponormal, then T lies in P1; if an operator
T lies in Pk, then UTU* belongs to Pk for all isometries U from M and k = 1, 2; if an operator T
from P1  admits  the  bounded  inverse  T−1,  then  T−1 lies  in  P1.  We establish  some new
inequalities  for  rearrangements  of  operators  from  P1.  If  a  τ-measurable  operator  T  is
hyponormal and Tn is τ-compact for some natural number n, then T is both normal and τ-
compact. If M = B(H) and τ = tr, then the class P1 coincides with the set of all paranormal
operators on H.
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