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Abstract

© 2017, National  Academy of Sciences. All  rights reserved. Ultrahigh-throughput screening
(uHTS) techniques can identify unique functionality from millions of variants. To mimic the
natural  selection mechanisms that occur by compartmentalization in vivo,  we developed a
technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double
water-in-oil-in-water  emulsion  (MDE).  Biocompatible  MDE  enables  in-droplet  cultivation  of
different living species. The combination of droplet-generating machinery with FACS followed by
next-generation  sequencing  and  liquid  chromatography-mass  spectrometry  analysis  of  the
secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This
platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the
theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of
human butyrylcholinesterase  mutants  that  undergo  self-reactivation  after  inhibition  by  the
organophosphorus agent paraoxon. The versatility of the platform allowed the identification of
bacteria, including slow-growing oral microbiota species that s uppress the growth of a common
pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory
activity.
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