The estimation of black-hole masses in distant radio galaxies

Khabibullina M. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

We have estimated the masses of the central supermassive black holes of 2442 radio galaxies from a catalog. Mass estimates based on optical photometry and radio data are compared. Relationships between the mass of the central black hole Mbh p and the redshift zp are constructed for both wavelength ranges (radio and optic). Upper-envelope cubic regression fits are obtained using the maximum estimates of the black-hole masses. The optical and radio upper envelopes show similar behavior, and have very similar peaks in position, $zp \approx 1:9$ and amplitude, log M bh p =9.4. This is consistent with a model in which the growth of the supermassive black holes is self-regulating, with this redshift corresponding to the epoch when the accretion-ow phase begins to end and the nuclear activity falls off.