Observational restrictions on sodium and aluminium abundance variations in evolution of the galaxy

Menzhevitski V., Shimanskaya N., Shimansky V., Sakhibullin N. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([AI/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within $-4.07 \leq [Fe/H] \leq 0.28$. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the AI I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05-0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with $[Fe/H] \ge -2.0$, and by 0.05-0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with $[Fe/H] \leq -2.0$. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0-0.1 dex for the stars of the thin disk ($-0.7 \le [Fe/H] \le 0.28$) to 0.03-0.3 dex for the stars of the thick disk (-1.5 \leq [Fe/H] \leq -0.7) and 0.06-1.2 dex for the stars of the halo ([Fe/H] \leq -2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ [Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ [Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but strongly differs (up to 0.4 dex) from the predictions of Samland. © 2013 Pleiades Publishing, Ltd.

http://dx.doi.org/10.1134/S199034131303005X

Keywords

abundances-Galaxy, evolution, stars